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GENERAL INTRODUCTION 

This dissertation consists of three independent papers. The first paper presents a way of 

detecting violation of consumer preference theory that has some of the advantages of existing 

parametric and nonparametric methods. The proposed method does not require any subjective 

input on behalf of the modeler and is therefore less subject to pretesting and data mining. The 

new method has the ability to detect slight violations in preferences, even when the budget 

constraint has shifted out, a feature that has not been found in the nonparametric models that have 

been presented to date. 

The second paper examines behavior of an expected utility maximizing individual who 

faces both price and production uncertainty and who has access to both ftitures and options 

markets. The key insight is that the mean value theorem can be used to solve expected utility 

maximization problems when the price distribution is truncated. The results show that firms will 

almost always use options and that the firm will hedge more or less in the futures market than it 

would in the absence of production uncertainty. The results also show that mean variance 

analysis produces a good result so long as markets are perceived to be unbiased and if there is no 

production uncertainty. The error caused by the improper use of mean variance analysis when 

production uncertainty exists can be quite large. 

The third paper shows that options have a role to play as a hedging instrument when 

production uncertainty is introduced. Options are useful whether or not producers believe that 

their individual yields are correlated with market prices. In addition, the usefulness of options as 

hedging tools increase with firm-specific production uncertainty and for producers who are more 

risk averse at lower revenues. 



www.manaraa.com

2 

Explanation of Dissertation Format 

This dissertation follows the ISU format for the alternate style. Because each paper was 

written for, and submitted to paper review journals, each contains an introduction and conclusion 

as well as a review of the relevant literature. An overall conclusion is included following the 

third paper. The first and third papers follow the American Journal of Agricultural Economics 

format and the second paper follows the Economics Letters format. 
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PART I. A TEST FOR THE CONSISTENCY OF DEMAND DATA 
WITH CONSUMER PREFERENCE THEORY 
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INTRODUCTION 

Recent papers by Alston and Chalfant (1991a, 1991b, 1991c), Chalfant and Alston, and 

Cox and Chavas (1987, 1990) have cast doubt on the parametric techniques previously used for 

measuring taste changes. Alston and Chalfant (1991c) most graphically demonstrated the problem 

with parametric methods by showing that one could detect structural change in beef demand 

almost 100 percent of the time in a system in which, by construction, no such change exists. In 

their paper, data were generated by a linear demand system, and the structural change test was 

conducted with a logarithmic and Almost Ideal Demand System (AIDS) model. 

This issue is very similar to that described by Leamer. Taste change effects, if they exist, 

will be relatively small. To measure these changes by using parametric methods, the researcher is 

forced to make decisions about the functional form and the estimation procedure. If the 

researcher is looking for (or if the system rewards) evidence of taste change, he or she need only 

search among the set of inferences one can draw from a particular data set for those results that 

are most pleasing. 

The proposed solution in the nonparametric literature is to avoid to the greatest possible 

extent all decisions that might influence the possible outcome. For demand analysis, this solution 

simply involves testing the data for consistency with the weak or strong axioms of revealed 

preference. These axioms avoid the need to express and estimate the direct or indirect 

expenditure functions and instead rely on very intuitive conditions. These conditions state that, in 

the absence of taste change, if a bundle of Qj is revealed preferred to a bundle of Q2 at one 
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Figure 1. A two-good example of Weak Axiom of Revealed Preference (WARP) 
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point, then Q2 cannot be revealed preferred to at another point, unless taste change has 

occurred. ' 

One problem that occurs with real data is that, as real income has increased, real 

expenditures on some commodity bundles have also increased. This trend makes it very difficult 

to find a bundle that was affordable and not consumed in one period but that was consumed later 

although the previous bundle remained affordable. This can best be demonstrated in Figure 1, 

where the left-hand panel shows a violation of consumer preference theory and the right-hand 

panel shows a similar situation but with the budget constraint shifted out. Suppose that the initial 

consumption bundle and price vector are Qj and Pj and that the consumer chooses bundle Q2 

when the price vector changes from Pj to P2. Intuitively, tastes have shifted away from good *2 

to good xj in both situations. For a violation of consumer preference, the budget lines must cross. 

Hence, the situation in the right-hand panel does not provide evidence of a violation of consumer 

preference theory.^ The movement away from X2 could be explained by an almost vertical Engel 

curve, and the movement toward Xj might have occurred because x^ is an inferior good. 

Consider Figure 2. Here, as discussed earlier, the movement from Qj to Q2 can be 

explained by assuming that xj is an inferior good. Suppose that we are prepared to assume that 

xj is not an inferior good, then the question arises as to whether the consumption change is 

' Consider a batch of commodities, Q^, purchased at prices P^. Now consider a second 
commodity bundle, Q2, such that P1Q2 ^ ^iQl- Because the consumer could afford Q2 at prices 
Pj but chose Qj instead, Qj is revealed preferred to Q2. The weak axiom states that, at prices P2, 
we will not see P2Q1 ^ ^2^2» Q2 be revealed preferred to Qj at any set of prices. 
The strong axiom introduces transitivity, i.e., if Qj is revealed preferred to Q2 and Q2 is revealed 
preferred to Q3, then Q3 must never be revealed preferred to Qj. 

^ Alston and Chalfant (1991a) recently showed that the probabilities of violating the Weak Axiom 
of Revealed Preference (WARP) tend to increase as the size of the taste change increases and as the 
growth rate of total expenditures decreases. 
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consistent with consumer preference theory. If consumption patterns are not consistent, then we 

may conclude that tastes (or consumer preferences) have changed. One very obvious implication 

of consistent preferences is that if consumers are held on the same indifference curve and 

subjected to the same price vector, then they should consume the same bundle. However, we can 

show that so long as X| is not inferior, the range of possible bundles found by adjusting for the 

price effect from does not overlap with the range found when the expenditure effect is 

compensated from Q2. 

To show that two regions cannot overlap, consider how actual demand would change if 

we start at Qj and change the prices to P2 and then compensate the consumer for the price 

change. Because we do not know the shape of the indifference curve, we draw the new budget 

line A'B' to allow for the maximum possible compensation; that is, we allow the consumer to 

purchase Qj at the new price line. In reality, the new budget line will lie to the left of A'B' and 

the new compensated bundle, h(U;, P2), will lie in the region AQjA'. Now if we start at Q2 and 

compensate for the price increase, the new bundle, g(Uj, P2), will lie in the region DQ2E. This 

is true because the consumer will spend the additional compensatory income on both non-inferior 

goods. We have created a situation with two demands, h(U|, P2) and g(Uj, P2). If consumer 

preferences are consistent, then the two solutions should be identical. Yet as we have shown 

graphically, the two regions do not even overlap. 

To measure this change in tastes, we ask which set of expenditure elasticities best explains 

the behavior, the remainder being attributed to taste change. This gives us the minimum taste 

change that explains the data. In this very simple example, one might conclude that the income 

elasticities are such that all the additional compensatory income is spent on X2; this would lead to 

Q2*. The minimum taste change is therefore away from xj by the horizontal amount Qj - Q2* 
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measured in units of X] as shown by Axj in Figure 2. This example motivates the test that 

follows. We minimize the degree of taste change that satisfies both consistency of preferences and 

the restrictions we place on these expenditure elasticities. This procedure is a little more 

complicated than that indicated by Figure 2. This is because the test minimizes the amount of taste 

change required to satisfy convexity of preferences, non-negativity and adding-up, while the 

intuition developed in Figure 2 uses only the convexity and non-negativity. However, the 

intuition remains the same. 

In the analysis that follows we progressively impose restrictions on the slopes of the Engel 

curves for meat data from the United States, Canada, Japan, and South Korea. First we impose 

non-negativity, adding-up, and convexity. Then, reasonable ranges for the expenditure elasticities 

are imposed. Finally, we impose restrictions on how the expenditure elasticities can change from 

year to year. In all cases, we simultaneously estimate the minimum consumption changes needed 

to satisfy consistency of preferences and the expenditure elasticities that best explain this behavior. 

The mechanism we use to measure the degree to which preference consistency is violated is based 

on a linear programming model recently developed by Cox and Chavas (1987, 1990) and Chavas 

and Cox. We introduce into their model the modifications needed to simultaneously solve for the 

set of expenditure elasticities that minimizes taste change and the amount of taste change itself as 

well as to impose restrictions on expenditure elasticities. In the empirical analysis, we use the new 

method, which we call a test for consistency of preferences, to detect and measure taste change in 

the countries mentioned above. 
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A TEST FOR CONSISTENCY OF PREFERENCES 

Suppose that n goods exist and that demand for good i, x^, is a function of prices, 

income, and taste as follows: 

x , = f f , P ' , y , T ' )  (1) 

where P and T are price and taste vectors, respectively; that is, P' = (pj, P2. ' ' Pn) T' = 

(ti, t2, • • •, tp), and y is income (or expenditure). If we differentiate equation (1), we find; 

* f *  S .1 ® 

Using the Sluts Icy equation and temporarily assuming that Ay = 0 for all j = 1, 2, • • 

n, equation (2) can be rewritten as: 

where a a Ay - 2j = i" xjApj and 6jy is an expenditure elasticity of good i. 

Equation (3) separates the demand change induced by price changes and expenditure 

change into two effects: the first part is the substitution effect induced by price changes and the 

second is the expenditure effect induced by both price changes and expenditure changes. 

Subtracting the second part in the right-hand side of equation (3) from the observed demand data, 

xj* = xj - a(xj/y)ejy, xj* is a compensated demand for good i. By holding the consumer on the 

same indifference curve in this manner, we can respecify the conditions under which consistency 
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of preferences is violated as P^'Q^* > P^'Qg* for all t and s, where Q* is a compensated 

consumption bundle at time t, i.e., Q^*' = (xjj* *nt*^*^ To see why this is true, consider 

Figure 3. Here we consider two consumption bundles, Qj and Q2*. Bundle Qj is a base-year 

consumption bundle and Q2* is the optimal consumption bundle at time 2 prices and the time 1 

utility level. Note that if the indifference curve is convex, then Q2* will lie to the right of AB. 

Now if we measure the expenditures of Q2* and Qj in time 1 prices, then expenditure Pi'Q2* 

will be equal to or greater than Pj'Qj. To see why this is true, draw a line through Q2* parallel 

to AB (CD in Figure 3) and measure expenditure in terms of good 2. If Pi'Q2* is less than or 

equal to Pj'Qj (i.e., OC < OA), then preferences are inconsistent with the data. Because the 

inequality Pj'Qj ^ Pi'Q2* depends on the convexity of the indifference curve, we call this the 

convexity condition.'^ 

Suppose that there are two goods, A and B, and that a positive taste change occurs in one 

good and a negative taste change occurs in the other good. When two goods are assumed to be 

substitutes, then a positive taste change in one good will decrease demand for the other good. 

Unfortunately, we cannot distinguish whether a taste change in good A causes demand for good B 

to change or whether a taste change in good B causes demand for good A to change. Therefore, 

taste change in good i in our model can be explained by Jj (9fj/9^)Atj rather than only by 

(dfj/dtj)At|. That is, the taste change in terms of good i is measured by the changes in the demand 

for the good, which cannot be interpreted by the substitution and expenditure effects, even though 

it may have been caused by taste changes in other goods. Therefore, the third term of the right-

3 If tor s is the base year, Q* is a consumption bundle rather than a compensated consumption 
bundle. 

Varian shows a similar condition for the cost-minimizing firm. 
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hand side in equation (2) will be simply expressed as tc;; tCj = Ej=ri" (3fj/3tj)Atj. 

Some values of TC always exist to satisfy the inequality P^'CQt* - TC() ^ P^'(Qg* - TCg) 

for all t and s, where TC^' = (tC|j, tCg,;, •••' tc^^).^ We can find the minimum TC that satisfies 

these inequalities by solving the following problem:^ 

Min b' TC (4) 
TC* 

s.t. pI(Q*-TC,) ^ pI(Q*-TC^ for all t and s 

e\y s 0 for all i and t 

where </> is a vector of expenditure elasticities, b is arbitrarily defined such that problem (4) is 

bounded, and wj^ and Cjy^ are an expenditure share and an expenditure elasticity of good i at time 

t. The first and second constraints represent the convexity and adding-up condition, respectively. 

The third constraint represents the non-negativity of expenditure elasticities. 

To see how the adding-up condition Influences the results, consider that, in the simple 

two-good model, the compensated demands of goods 1 and 2 at time 2, xj* and xg*, are; 

^ Taste change may be negative or positive so that (TC"*" - TC ") is actually substituted into TC in 
the linear programming problem, where TC"*" ^ 0 and TC " ^ 0. 

® Chavas and Cox test for technical changes by using a similar method. 
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*2* = *2 -

and the adding-up condition is: 

^l^ly + = 1 

Because equations (S) through (7) have four unknown variables and three equations, we can 

obtain the following relationship: 

„ X, w, 
where H. = x-il + —) 

y Wj W2 

II2 = 

Because IIj and 112 known coefficients and 112 positive, the compensated demand of good 

2, X2*, has a linear negative relationship with xj*. Now suppose in Figure 2 that this relationship 

was satisfied along the line that connects Q2* and G. Then, the restriction has no impact as it 

allows the vertical move from Q2 to Q2*. Suppose, however, that the expenditure elasticities that 

* 
underlie the move from Q2 to Q2 violated adding-up; this is equivalent to stating that the 

relationship between X2* and xj* intersect at some point other than at Q2*, say at point F. In this 
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case, the minimum taste change would be Qj - Q2* units of xj and Q2* - F units of X2. 

One practical problem remains; because A represents a very small change, Ay, Ax, and 

Ap in equations (2) through (8) must also be small changes. To address this, we set the year of 

first observations as a base year, or time 1. We then denote the partial expenditure effect of good 

i at time t (pee^) as an expenditure effect that occurs when consumption bundles and their prices 

at time t are compared with those at a previous time (t-1). Then the expenditure effect on good i 

at time t, (ee;^), is the sum of partial expenditure effects from time 2 to time t: 

««ir = P^^i} = Y!j.2 

Similarly, we let the partial taste change of good i at time t (ptCjj) be a taste change that occurred 

between (t-1) and t. Taste change of good i at time t (tCj^) is therefore also measured as the sum 

of the partial changes from time 2 to time t: 

= 23.2 m 

In effect, the taste change at time t would be the accumulation of past taste changes as 

well as a current taste change when the current consumption bundle is compared with that of the 

base year. 

Substituting (9) into (3) and rearranging, the compensated demand for good i at time t 
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^/r = x, - Y!j..2 (11) 

By substituting (10) and (11) into (4), we avoid the need for estimating Xj( . The model 

we actually solve is: 

Min f,/ PTC (A) 
PTC* 

s.t. (0 % - TH-.i % 

^ E.11^.2 

+ E;=2 - K, 2^.2 pup^<^ij 

for all t and s 

(iff) e!y k 0 /or o// ; a/w/ f 

where PTC is a vector of partial taste changes; PTC = (ptcji, ptC2i, - - , ptc^j, • • • , ptcj-p, 

ptC2T, • • • , PtCnx). 

^ Xjf in (11) is a compensated demand for good i if there is no taste change. This condition was 
relaxed by introducing taste change terms into (4). Another way of introducing taste change is to 
subtract Éj=2^ ptcy from the right-hand side of (11). The results in both cases are the same. 
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EMPIRICAL APPLICATION 

Data 

Data on per capita annual consumption of beef, pork, and chicken during 1971 through 

1984 for four countries (the United States, Canada, Japan, and South Korea) are used. The U.S. 

data is taken from Chalfant, the Canadian data from Van Kooten, and the Japanese data from 

Wahl and Hayes. The South Korean data is collected from the annual reports of the Agricultural 

Cooperative Federation and the National Livestock Cooperatives Federation. Because of the 

enormous number of restrictions necessary to solve the model, we were limited to 15 years of 

data. We choose the IS years that all four data sets had in common. This centers the U.S. data 

around the 1976 to 1978 period and therefore includes the years of maximum U.S. beef 

consumption as well as the decrease in consumption that triggered the series of taste change 

studies mentioned earlier. 

Results and Discussion 

The results obtained from U.S. meat demand data using the model (A) are presented in 

Figure 4. This figure represents the per capita change in pounds from the base year of 1971. One 

of the more interesting features of these results is the gradual trend away from beef. As the 

program is written, each year is treated independently; therefore, years in which taste moved in 

favor of beef can in practice be followed by years in which the movement was against beef. The 

existence of a trend away from beef would seem to indicate that the source of the inconsistency-

be it data driven, or caused by health concerns-is not random. 

The beef results indicate a cumulative movement away from beef of approximately 3.5 lb 

per capita with most (2 lb) occurring from 1972 to 1973. Actual per capita U.S. beef 
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Figure 4. Taste change in U.S. meat demand 
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Year 

1972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

19 

Expenditure elasticities required to minimize tlie taste changes in U.S. meat demand 

Beef Pork Chicken 

0.00 0.00 9.62 

1.78 0.02 0.00 

1.76 0.00 0.00 

1.17 0.00 2.85 

0.12 1.54 4.52 

0.00 0.00 8.40 

0.00 0.00 8.62 

0.00 0.00 8.85 

1.06 0.00 3.33 

0.00 3.22 0.00 

0.00 0.21 8.06 

0.00 0.00 8.47 

0.00 0.00 7.35 
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consumption from 1971 to 1980 was 83.4, 85.4, 80.5, 85.6, 87.9, 94,4, 91.8, 87.2, 78.0, and 

76.5 lb, respectively. The results for U.S. pork and chicken consumption are consistent with 

theory, with small violations against pork and toward chicken in 1984. 

In the above model, we imposed only adding-up and non-negativity restrictions on 

expenditure elasticities. The expenditure elasticities that underlie Figure 4 are shown in Table 1. 

As mentioned, these elasticities are found by minimizing the amount of taste change. The program 

makes no attempt to realistically measure these elasticities other than to ensure that they satisfy 

adding-up and non-negativity. The expenditure elasticities of chicken seem unreasonably high. 

This motivates the imposition of restrictions on the expenditure elasticities discussed next. 

If we knew the true expenditure elasticities, our test results would be more accurate than 

the results obtained from using (A). If we attempt to measure these elasticities, however, the 

model misspecification problem will be reintroduced. To minimize this disadvantage, we now 

introduce statistical confidence intervals of estimated expenditure elasticities. The hope in doing so 

is that errors arising from model misspecification can be minimized. The model (A) can be 

rewritten when the upper and lower bounds of expenditure elasticities are considered: 

(B, 

(0 El-.i % - Si % 

+ TH-i puptcij - YH-.i pup̂ c,j 

for all t and s 
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00 E, 1 yôr a// f 

(m") i 0 for all i and t 

(iv) |i^ 5 <j) 

where and are vectors of lower bounds and upper bounds, respectively, of estimated 

expenditure elasticities. The expenditure elasticity of good i, which is derived Arom (5) or (6), has 

lower and upper bounds ejy^ and ejy^; 

and thus the compensated demand of good i has a narrower range than does (A), as follows: 

clxi ff ^ qxi 1 
Xi - —i X, g -Gg, for all i 

The expenditure elasticities of meat demand are estimated fi"om the AIDS model of 

Deaton and Muellbaur as: 

P(;og(PP + P;og(-p) + 

where P* is a price index approximated by the Stone geometric index; that is, logCP") = 2^=^ 

Wjlog(pj), and e^ is an error term. The time period estimating the expenditure elasticities is 

1960-85. 
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Table 2. Upper and lower bounds of expenditure elasticities at the means 

South 
United States Canada Japan Korea 

Lower Upper Lower Upper Lower Upper Lower Upper 

1.042 1.369 1.149 1.452 0.595 1.780 0.351 0.783 

1.206 1.789 

0.462 0.906 0.442 0.860 0.316 0.692 1.394 1.869 

0.392 1.374 0.529 1.022 1.258 1.543 -0.382 0.760 

Beef 

Dairy 

Pork 

Chicken 
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Figure 5. Taste change in U.S. beef demand 
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Table 2 shows the upper and lower bounds of expenditure elasticities at the mean when 

confidence intervals of 95 percent are used.^ The U.S. expenditure elasticities for beef range 

from 1.042 to 1.369, and the chicken elasticities range from 0.392 to 1.374. These elasticities 

seem more reasonable than those presented in Table 1. 

The results obtained from U.S. meat data using model (B) are shown in Figure 5, where 

only the taste changes of beef are represented for graphical convenience. These results indicate a 

movement of slightly more than 5 lb against beef. The unreported results for chicken show a 

positive movement of 2.6 lb between 1979 and 1984. These numbers are not dramatically 

different from the results of the first test despite the very restrictive impact of this procedure on 

the magnitude of the chicken expenditures. 

A second way of imposing realism on the elasticities from Table I is to impose reasonable 

bounds on how elasticities can change from year to year. For example. Table I indicates that the 

expenditure elasticity for chicken was 9.62 in 1972 and 0.00 in 1973. This result motivates a 

restriction on the magnitude of the year-to-year changes in expenditure elasticities. This procedure 

does not depend on any parametric estimates. Suppose that we impose the restriction that the 

difference of the expenditure elasticities between time t and the previous time (t-1) for all t is less 

than ±6. Then, |€jy' - ejy'"' | ̂  ô is used in place of the fourth constraint in (B) to get model 

(C). 

The smaller ô is, the larger the magnitude of taste changes. In our applications, ô = 0.15 

and 0.2 for all i and t, respectively. That is, the changes of expenditure elasticities at time t are 

allowed to change from - 0.15 to ejy'"' + 0.15 and from ejy'"^ - 0.2 to ejy^"^ + 0.2, 

® We actually used different lower and upper bounds of expenditure elasticities every year because 
ejy = 1 + and Wj^'s are different every year. 
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respectively. 

The results obtained from model (C) for U.S. beef data are also shown in Figure 5. The 

lines "0-0-0" and "A-A-A" show the taste changes obtained by using & = 0.15 and ô = 0.2 in 

problem (C). The taste changes in both cases are almost identical. 

One could also place the year-to-year restriction on the estimated elasticities of the second 

procedure; however, this procedure does not change the results in any significant way. 

For the United States, one may conclude that some consistent bias has existed against 

beef. The cumulative effect of this bias has been somewhere between 3.5 and 5.0 lb over the 

period of the study. Interestingly this is similar to the result found by Moschini and Meilke when 

using parametric techniques. We cannot tell if this inconsistency is attributable to some systematic 

error in the data, for example, a gradual underreporting of the amount of fat cut off beef, or 

because consumer preferences have in fact moved against beef. The magnitude of this bias seems 

small, however, when compared to the more than 15-lb decrease in consumption observed 

between 1976 and 1984. 

The U.S. results demonstrate the ability of the new method to detect relatively small 

changes in preferences. Given the standard errors usual in parametric work, it is unlikely that one 

could ever provide convincing evidence of a one- or two-pound per capita change in preferences. 

Also, neither Chalfant and Alston nor Cox and Chavas detected any taste change when 

nonparametric methods were used. 

Figures 6 through 8 show results from (A) and (B) for Canada, Japan, and South Korea, 

respectively. These results are expressed in kilograms per capita. The results for Canada are very 

similar to those for the United States, with a maximum shift against beef of 3 kg and a move in 

favor of poultry of almost 3 kg. The Canadian results indicate a slight movement away from pork 
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Figure 6. Taste change in Canadian meat demand 
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that occurs almost 10 years later in the United States. 

The results for Japan show a positive movement toward native Japanese, or Wagyu, beef 

and a negative movement against Japanese dairy beef and imported beef. The magnitude of these 

changes is very small but represents a significant proportion of consumption. (In 1984, Japanese 

consumers ate 1.089 kg of Wagyu beef and 2.751 kg of dairy beef.) There is evidence of a slight 

shift away from pork in Japan while all the chicken data were consistent with preferences. Wahl, 

Hayes, and Williams report that Japanese farmers replaced Wagyu draft animals with tractors in 

the early 1970s and began fattening Wagyu animals for beef production. This change means that 

the quality of Wagyu beef would have improved considerably during this period. In the Japanese 

government statistics, data for Wagyu animals do not differentiate between retired draft animals 

and younger custom-fed beef animals. It seems likely, therefore, that the source of the 

inconsistency in Japan was data driven rather than consumer driven. 

The South Korean results indicate a positive movement toward beef up to 1978, followed 

by a slight decrease to 1984. A slight movement against pork occurred between 1972 and 1976, 

but this was almost reversed in 1981. Again, no violations in the chicken data were detected. 
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CONCLUSIONS 

This paper presents a way of detecting violation of consumer preference theory that has 

some of the advantages of existing parametric and nonparametric methods. The proposed method 

does not require any subjective input on behalf of the modeler and is therefore less subject to 

pretesting and data mining. The new method has the ability to detect slight violations in 

preferences, even when the budget constraint has shifted out, a feature that has not been found in 

the nonparametric models that have been presented to date. 

The advantages of the new method are introduced by adding additional information about 

consumer behavior to previously available non-parametric methods. We assume that consumers 

meet their budget constraints, and that additional expenditure, or income, does not cause demand 

for any good to fall. We show that if one is prepared to accept additional restrictions on the 

magnitude or rate of change of expenditure elasticities that the sensitivity of the test is improved. 

The model was used to examine meat demand data for the United States, Canada, Japan, 

and South Korea. The results indicate that a shift away from beef has occurred in the United 

States and Canada, while the opposite may have been true in Japan and South Korea. Smaller 

negative shifts have occurred against pork in all four countries. U.S. and especially Canadian 

consumers seem to have moved toward chicken, whereas Japanese and South Korean consumers 

have remained neutral. 

The methodology used here has many possible applications. For example, one could 

determine whether generic or branded advertizing campaigns have been successftil. One could 

also measure the impact of societal changes on demand for commodities or commodity 

aggregates. Finally, one could assume that consumer preferences are constant and check for 

structural change before using data for econometric purposes. 
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PART II. EXPECTED UTILITY MAXIMIZATION WITH TRUNCATED 
DISTRIBUTIONS: AN APPLICATION OF THE MEAN VALUE 
THEOREM 
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INTRODUCTION 

Losq (1982) used a mean value theorem to examine expected utility maximizing hedging 

behavior in the presence of both price and production uncertainty. This paper introduces options 

markets into Losq's model. Options truncate the price distribution at the strike price, and 

therefore invalidate the required conditions for the application of mean variance analysis. Our 

results show that the availability of options markets may cause behavior that violates Losq's 

results. We also show that the mean variance analysis will be misleading if production process is 

stochastic and/or if futures and options prices are perceived to be unbiased. 

Other institutions such as insurance and some government programs truncate the 

distribution of price or revenue. The application of the mean value theorem presented here is 

therefore useful for situations other than that considered here. 
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MODEL 

One can replicate the payoff of any combination of futures, puts, and calls with any two 

of these assets. Therefore, we will focus on futures and put options. For simplicity, assume that 

production variability in one region does not affect prices,^ that a producer makes hedging 

decision after deciding on inputs levels, that only one strike price for put options is available, and 

that this is the current futures price. The random profit at harvest time can be written as 

Y = PQ + iF-F)X + {R- R)Z - C(Q) (1) 

where subscripts ~ and - denote a random variable and expected value, respectively; Q is the 

random output; X and Z are the futures and put options sold by the producer, respectively; C(Q ) 

is a cost function; F is the futures price at the time of production decision; F is a futures price at 

harvest; P is the cash price at harvest; R is the put option price at the decision time; and R is 

the terminal value of a put option with R = (F - F )L, where L = 1 if F ^ F and L = 0 

if F S F. 

Following Benninga, Eldor, and Zilcha (1983, 1984) and Lapan, Moschini, and Hanson 

(1990),^ the cash price is assumed to be a linear regressive function of the futures price: 

P = T + p + ë 

where E[e ] = 0 and e is assumed to be independent of F and Q . 

^ Results for the dependence case are available in Part 3. 

^ Lapan, Moschini, and Hanson introduce options into an expected utility maximization problem 
where production is ceitain. The absence of production uncertainty in their model allows for a more 
straight forward method than the mean value theorem used here and by Losq. 
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The producer is assumed to choose X and Z to maximize the expected utility of random 

profit, that is. Max E[u(Y )], where u is a utility function and is assumed that u' > 0, u" < 0, 
X, Z 

and u'* > 0. Assuming that F= F and R = R, the first order conditions are 

Eiu'ObiF - /)] = 0 or E[u'iY)(,F - F)] = 0 <2.l) 

E[UXY){R - (F - F)L]] = 0 or E[uXy){(F - F)L + R)] = 0 (2.2) 
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SOLVING FOR OPTIMAL FUTURES AND OPTIONS DEMAND 

By defining g(F ) = E[u'(Y )|F ] and using E[*] = E[E{«|F }], the first order 

conditions in (2.1) and (2.2) can be written as 

E[u\W - -Ô1 = E[g{F){F - FxRil = 0 <3.l) 

m'VbHF -F)L + ^}] = E[g(F)[iF - F)L + m = 0 <3.2) 

The conditions for using the mean value theorem are continuity and differentiability. 

With the existence of options, the price distribution is truncated at the strike price and thus g(F ) 

is not differentiable at F. That is, since L = 1 when F approaches F from the left side and 

L = 0 when F approaches F from the right side, the slopes of g(F ) with respect to F at and 

F" are 

lim_ ÊiÊl = £[M"(y)(pQ -
dF 

and 

thus 

lim_ Mil = E[u"(X)i{iQ - X + LZ)\F-*F'] 
F-F" dF 

if Z * 0, ^ lim_ 
F-F* F F-F" dF 

Therefore, g(F ) is not differentiable at F although it is continuous. However, g(P ) is 

differentiable over the intervals [0, F] and [F, oo) and thus the mean value theorem can be 

applied separately to g(F ) in the regions [0, F] and [F, oo). 
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Figure 1. A schematic representation of how the expected marginal utility conditioned on realized futures 
price réponds to the futures price using the mean value theorem 
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Before proceeding, note that g(F ) is strictly convex in F over the interval [0, F ] and 

[F, 00). That is, a^/g(F )/9F 2 {= Efu'-'CY )(/5Q - X + LZ)2|F ]} is always positive in [0, F] 

and [F, oo) If nonincreasing absolute risk aversion is assumed.^ 

Figure 1 shows how the mean value theorem can be applied to g(F ) over the interval 

[F, 00 ). Suppose that curve DACBE represents g(F ). Then, there is a futures price fg such that 

g'(fo) equals the slope of the line AB. Here, for some FQ, fg is unique given the strict convexity 

of g(F ) in [F, oo). Equivalently, the slope of the line connecting [F, g^)] and [F , g(F )] for 

any F in F > F is the same as g'(f ), that is, 

gi.̂  - = E[u"(y)î Q - X + LZ)\F\ (4) 
F - F 

where y is profit associated with a futures price of f and f is monotonically increasing function 

of F because g(F ) is strictly convex in [F, oo). The left hand side in (4) represents the slope of 

line AB and the right hand side represents the slope of g(F ) at f . Applying the mean value 

theorem to g(F ) over the interval [0, F ] requires a similar procedure. 

From (4), g(F ) is 

g{F) = gih + (f - hÊ[u"(y)m -X +LZ)\F\ 

Substituting (5) into (3.1) gives 

^ Under nonincreasing absolute risk aversion, 9A/9Y = -[u"(Y )/u'(Y )] + [u"(Y )/u'(Y )]^ 

^ 0. This means that u'" must be positive. Therefore, the second derivative of g(F ) with respect 

to F is positive. 



www.manaraa.com

40 

E[(F - F)8(_F)] + E[(F - ^2{£[u"()0(PQ - X + LZ)\F\n = 0 (Q 

Since g(F) is a fixed number and E[E{* |F }] = £[•], (6) can be rewritten as 

E[(F - F)MF) + E[U'WF - - X + LZ)] =0 

Since E[F - F] = 0, equation (3.1) can be rewritten as follows: 

E[u"(^(F - F)H^Q - X + LZ)] =0 (7) 

Equation (3.2) can be rewritten in a similar manner with (6): 

- F)] + RE[u'(Y)] = 0 (8) 

where a = Prob[F ^ F ] and subscript 1 represents the conditional expectation on F F, that 

is, EjH = E[.|F ^ F]. 

By substituting g(F ) into (5), the first term (FT) in the left hand side of equation (8) can 

be written as 

aE,[(F - + (F - F)E[u"(y)(^Q - % + LZ)|^}] 

Factoring out terms within {•}, and using E[E{*|F }] = E(*] and L = 1 when F ^ F, this 

term becomes 

agiF)E,[F - ̂  + aEymP " - X + Z)] 

Now using R = E[(F - F )L] = - o;Ej[F - F] and g(R = E[u'(Y )|F = F] we get 
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- ^1 = - mu'oh\f = ^ + (ie^[u"mf - ̂ ^(P<? - % + z)] 

Therefore, (8) can be rewritten as 

^(EIu'W] - m'iy)\F = F\]+aEi[u''(y)iF - - X + 2)] = 0 (9) 

Factoring out terms in {•}, (7) and (9) can be rewritten, at the optimum, as follows 

(10.1) 

(10.2) 

mu"(y)(.F - PfQ] - X'E[u"(y)(F - Ff] 

+ Z'aE^[u"(y)(F - Ff] = 0 

^{£[u'(^] - E[u'(Y)\F = + {iaE^[u"(5f)(F - F)^Q] 

- X*aE^[u"(y)iF - F)^] + Z'aE^[u"(y)(F - F)^] = 0 

where X* and Z* represent the optimal futures and put options amounts, respectively. 

Consequently, equations (10.1) and (10.2) can be rearranged as follows: 

V - W* = P« (111) 

- + SEff/' = - pa + c (11 2) 

where igpp = E[u"(y )(F -F)2], ^pj = aE;[u"(y)(F -F)2], a = E[u"(7)Q (F -F)2], b 

= aEi[u"(7)Q(F -F)2i,c = - R{E[u'(Y)]-E[u'(Y)|F = F]}. 

By assumption u" < 0, therefore i^pp, ^ppj, a, and b are negative. Also, i£pp < 
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iSpFi < 0 and a < b < O.'^ 

To figure out the sign of c is less straightforward. Using c = - R[E{g(F ) - E{g^}] = 

- RE[g(F ) - g^Jand substituting g(F ) - g^ = (F - RE[u"(y )03Q - X* + LZ*) |F ], c can 

be rewritten as 

c = - ^u"(y)(P<? - X' + LZ')] 

= - RCov[F, u"(y)(^Q - X* + LZ*)] 

The covariance term has the same sign as 9[u"(y )(PQ - X* + LZ*)]/9F = u"'(y )08Q - X* + 

LZ*)^(3f /9F ), which is positive under the nonincreasing absolute risk aversion. Therefore, c is 

also negative. 

From (11.1) and (11.2), X* and Z* can be obtained as 

X' = ~ (13.1) 
A 

and 

Z' = (13.2) 
A 

where A = Sppi£pp| - •^ppi^ = ^FFl^^FF ~ ^FFl^ ^ ® since iGpp < ^ppi < 0. 

Consequently, the producer always sells futures, that is, X* > 0. On the other hand, whether he 

or she sells or buys put options is ambiguous. 

^ Because %p - %pi ï_(L- «)E[u"(^)(F -R^IF S FI < 0, iCpp < %pi < 0. 
Similarly, a - b = (1 - a)E[u"(y )Q (F - F)^|F à F] < 0 and thus a < b < 0. 
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Proposition 1 

When both futures and options are available and when they are perceived to be unbiased, 

the optimal hedge for a firm with stochastic production may be less than, equal to, or greater 

than the nonstochastic optimal hedge ^Q. 

Substituting Q = Q + (Q - Q) into a and b, we get 

Û and b = 

where igqpp = E[u"(y )(Q - Q)(F ^^d = aEi[u"(^)(Q - Q)(F - F)^]. 

Substituting a and b obtained here into (13.1), X* can be rewritten as 

X' = BÔ + + g) (15) 
A 

where ^Qpp = E[u"(y )(Q - Q)(F = E[(F - R2cov{u"(y ), Q |F }]. The conditional 

covariance has the same sign as 3u"(y )/9Q = i8u"'(y )f (3f /9F ), which is positive since 

u'* > 0 and 9f /9F > 0 with nonincreasing absolute risk aversion. Similarly, ^qppi is 

positive but is less dian ^Qpp, that is, 0 < •SSqppi < ^Qpp. The second term of the right 

hand side in (15) can be positive, zero, or negative. Therefore, the optimal futures amount sold 

by the producer can be less than, equal to, or greater than /SQ. QED 

McKinnon (1967) and Losq showed that in the absence of options markets production 

uncertainty causes producers to hedge less than would otherwise be the case (X* < /8Q). When 

the options market is introduced here, the results indicate that X* can be less than, equal to, or 

greater than /3Q. 

This result can be supported by numerical simulation. Assume that P = F and that the 
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producer exhibits a constant absolute risk aversion, that is, u(Y ) = -exp[-AY ], where A is the 

constant absolute risk-aversion coefficient. Also, assume that price is normally distributed with 

mean $7.32 and variance 2.48 and that output is normally distributed with mean 3,000 and 

variance 5,300.^ The results obtained from the expected utility maximization are X* = 3,140 

and Z* = 350 for A = 0.00015 and X* = 2,870 and Z* = 70 for A = 0.00045. Because P = 

F , jSQ = 3,000. Therefore, X* is greater than 3,000 bushels when A = 0.00015 and less than 

3,000 bushels when A = 0.00045. 

Proposition 2 

If options and futures prices are unbiased and if there is no production uncertainty, 

optimal behavior for expected utility maximizing firms is the same as for firms that maximize a 

mean variance utility function. This relationship does not hold when production uncertainty is 

introduced. 

Becuase options truncate the price distribution, mean variance analysis can be used only 

when the utility function is quadratic, that is, u" = 0. 

Substituting a and b in (14) into (13.2), Z* can be rewritten as 

2» = 0 + ~ ^FP^QFF^ * (16) 
A 

Substituting Q = Q+(Q-Q) into c in (12) and rearranging, one obtains 

^ These numbers except mean output are based on data for Iowa soybean growers (Soybeans: 

Iowa's Premier Crop). 
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C = -^[p% + Ê£ÇF - %'Sgf + (17) 

where % = E[u"(y)(F -F)], %, = aEi[u"(F -F)], andigqp = E[u"(Q -Q)(F -F)]. 

Substituting X* and Z* from (15) and (16) into (17) and rearranging yields 

^ - PS£f££fj7j(S£Qf.|r - S^Qfp/) + ~ 

Suppose that production process is nonstochastlc. Then, ^Qp, •^qff» -^QFFl 

zero and c = 0 and thus the second terms of right hand side in (IS) and (16) are zero. The 

producer will sell /3Q in fritures markets and options are redundant. This result does not depend 

upon the sign of u". 

The signs of c, -^QpF» •^QFFl depend upon the sign of u". We have already 

singed these terms when u'" > 0 in statements followed by (12) and (15), that is, c is opposite in 

sign to u", and ^qff -^QFFl (^^^e the same sign as u'*.^ Suppose that u'* = 0. Then, 

these terms are zero and thus the second term of the right hand side in (15) and (16) are zero. 

Therefore, The optimal futures and put options amounts are j3Q and 0, respectively. QED 

If one is willing to assume the unbiased fritures and options prices and nonstochastic 

production, the mean variance analysis will provide the same result as expected utility 

maximization. However, if production is stochastic, the results obtained from the mean variance 

analysis will be misleading. For example, suppose that output is normally distributed with mean 

20,000 bushels and variance 2,300,000 and that price distribution is the same as before. Then, 

^ When u'" < 0 these results are reversed. 
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the optimal futures and put options amounts are 15,370 and -460 for A = 0.00045 and 21,690 

and 5,650 for A = 0.00001. The mean variance solution in both of these cases is to sell 20,000 

on the futures market and not to participate in the options market. 
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CONCLUSIONS 

This paper examines behavior of an expected utility maximizing individual who faces both 

price and production uncertainty and who has access to both futures and options markets. The 

key insight is that mean value theorem can be used to solve expected utility maximization 

problems even when the price distribution is truncated. The results show that firms will almost 

always use options and the firm will hedge more or less in the futures market than it would in the 

absence of production uncertainty. 

The results also show that mean variance produces accurate results so long as markets are 

perceived to be unbiased and if there is no production uncertainty. The error caused by the 

improper use of mean variance analysis when production uncertainty exists can be quite large. 
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PART III. HEDGING PRODUCTION RISK WITH OPTIONS 
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INTRODUCTION 

In a recent paper, Lapan, Moschini, and Hanson (LMH) extended Sandmo's expected 

utility model to analyze production, hedging, and speculative decisions when futures and options 

markets exist. One important implication of this work is that when individuals perceive futures 

and options markets to be unbiased and when cash prices are a linear function of futures prices, 

diere is no place for options as hedging instruments. 

The key to the LMH result is that one can divide the price risk into a component 

attributable to changes in end-of-period futures prices and an orthogonal component reflecting 

undiversifiable basis risk. Because the diversifiable risk is linear in futures prices, ftitures 

contracts (which are linear in futures prices) dominate options contracts, which are nonlinear in 

futures prices. 

A recent survey of Iowa farmers indicated that as many producers use options to hedge as 

use futures (Sapp). This finding is in contrast to the LMH result and raises the question of the 

conditions under which producers may find it optimal to use options to hedge. In the context of 

the LMH result, this is equivalent to the conditions under which the risk faced by producers is 

nonlinear in futures prices. One way to introduce this nonlinearity is to introduce production 

uncertainty. For example, grain producers may believe that low individual grain yields (caused 

by drought) are associated with high grain prices. If producers sell more grain on the futures or 

forward markets than they obtain from on-farm production, they will be forced to purchase 

expensive grain to meet contractual commitments. Alternatively, if prices are low (due possibly 

to abundant rainfall in the Upper Midwest) and if farm production is greater than anticipated, 

producers may not hedge enough production to eliminate all the price risk. 
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In the case in which the expected correlation between local output and futures prices is 

zero, one can still develop an intuitive motivation for options because the effect of quantity 

uncertainty on profit is greater at higher prices. For example, a producer may anticipate price 

changes and fully hedge a 100 bushels/acre crop on the futures market. If actual production is 

only 80 bushels/acre, the producer will be exposed to a loss that increases with increases in the 

futures price. At $5/bushel this loss amounts to $100/acre and at $10/bushel this loss is 

$200/acre. This somewhat counterintuitive situation occurs because losses in the fiilly hedged 

futures position more than offset the benefits of increasing prices on the physical position. 

The purposes of this paper are to introduce production uncertainty into the LMH model 

both theoretically and by means of simulation examples and to show how options can be used to 

hedge against production uncertainty when output is uncertain. We focus on investors who 

believe that both futures and options are unbiased. 

This paper is organized as follows. The model is set out under the assumption that local 

production variation does not affect the price of the commodity, and the optimal positions for 

futures and options are illustrated. The effect of production uncertainty on optimal hedging 

behavior is then emphasized. Next, the independence assumption is relaxed. 

As might be expected with random price and output variables, two financial instruments, 

and a truncated distribution, the results for the general case require a lengthy and somewhat 

tedious derivation. One motivation for the presentation of these derivations is that they can be 

used as the basis for a more specific and richer analysis, which is demonstrated in the penultimate 

section of the paper by simulating the decision-making process of an Iowa corn producer. The 

final section presents the conclusions of the analysis. 
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MODEL 

It is possible to replicate the payoff of any combination of futures, puts, and calls with 

any two of these three assets. Our attention will focus on futures and put options. For 

simplicity, only one strike price for put options is considered and this strike price is assumed to 

be the current futures price. Suppose that a producer makes hedging decisions after deciding 

input levels. Also suppose initially that production variability in one region does not affect 

prices. The random profit at harvest can be written as 

Y = PQ * (JF - F)X + (R - R)Z - C(Ô 

where the superscripts ~ and - denote a random variable and expected value, respectively; Q is 

the random output; X and Z are the futures and put options sold by the producer, respectively; 

C(Q ) is a cost function; F is the futures price at the time of the production decision; F is a 

futures price at harvest time; P is the cash price at harvest time; R is the put option price at 

decision time; and R is the terminal value of a put option with 

(L = 1 i/F i F 
R = (F -  F)L where < (2)  

\ L = O i f F > : F  

Following Benninga, Elder, and Zilcha (1983, 1984) and LMH, the cash price is assumed 

to be a linear regressive function of the futures price: 

f = T + Pf + ë (3) 
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where E[e ] = 0 and £ is assumed to be independent of F and Q . ̂  Substituting (2) and (3) 

into (1), the random profit yields 

? = (T + PF + ë)Q + (F - + {JÎ - (F - F)L}Z - C(Q) W 

The producer is assumed to choose X and Z to maximize the expected utility of random 

profit, that is. Max E[u(Y )] where u'(Y ) > 0 and uT^ ) < 0. Assuming that F = E[F ] = F 
X, Z 

and R = E[R ] = R, the first-order conditions are 

E[u '(Y)(F - F)] = 0 or E[UXY)(F - F)] = 0 

and 

E[u'(Y)[R -  (F -  F)L}] =0 or E[u'( ,Y)[(F -  F)L + R}] = 0 (^.2)  

By defining g(F ) = E[u'(Y )|F ] and using £[•] = E[E{*|F }], the first-order 

conditions in (5.1) and (5.2) can be written as: 

E[u'iY)iF - F)] = £[(F - F)E[uX}0 |f}] = Ffe(^(F - ^] = 0 

and 

E[u'(Y){(F -  F)L + = £[{(F - F)L + R}E{uXY) |F}] 
(6.2) 

= E[g(â{(F - + ^)1 = 0 

Given subjective distributions of prices and output and a known utility function, the 

optimal futures and put options position, denoted by X* and Z*, can be found by numerical 

optimization. However, because the true utility function and price and output distributions are not 

^ We allow for basis risk in the theoretical model but assume it away in the simulation. 
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known, results derived from particular examples may be misleading and lack generality. 

Tlie mean value theorem^ can be used to obtain some results for the general case where 

neither the utility function nor the price and output distributions are known. Using this theorem, 

one can solve for the signs of X* and Z* and/or the relative sizes of X* and Z*. In the general 

case, it can be shown that options are almost always used to hedge production uncertainty in a 

way that makes intuitive sense. 

Using the mean value theorem, we can find a unique f somewhere between F and F such 

that g(F ) = g^) + (F - F) g'(f ), where g'(f) = E[u"(y )03Q - X + LZ)|F ],3 

flf /9F > 0, and y is the profit of an individual firm when the futures price is f . This 

procedure is shown in Appendix A. Substituting g^ + (F - F)g'(f ) for g(F ) in (6.1) and 

(6.2) and arranging, the following relations for X* and Z* can be obtained'^ 

V - ^FFjZ' = Pa (7-1) 

- = - p& + c (7.2) 

where %f = E[u"(y )(F - F)2], = aEi[u"(y)(F -F)2], a = E[u"(7)Q (F - F)2], b 

= aEi[u"(y )Q (F -F)\ c = - R{E[u'(Y )] - E[u'(Y )|F = F]}, a = Prob[F ^ F], and 

subscript 1 represents the conditioning on F ^ F, that is, E^M = E[*|F ^ F ]. 

By assumption, u"(y ) is negative for all y . It is obvious that Q and (F - F)^ are 

2 Refer to Stein or Rudin. 

^ The term g'(f ) is the expectation of u"(y )(/3Q - X + LZ) conditioned on?. We can replace 

g'(f ) with the conditional expectation of u"(y )(/3Q - X + LZ) on F because? has a one-to-one 

relationship with F , and because f ^ (^) F if and only if F ^ (^)F (refer to Appendix A), 

^ The derivations of (7.1) and (7.2) are available in Appendix C. 
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positive, and tlierefore i^pp, ^ppj, a, and b are always negative. Also, we know that iCpp < 

fCppi < 0 and a < b < 0.^ 

Obtaining the sign of c is less straightforward. Using c = - R[E{g(F )} - E{g(TF )}] = -

RE[g(F ) - g(F)] and substituting g(F ) - gÔF) = (F - F)E[u"(y )(0Q -X* + LZ*) | F ], c can 

be rewritten as 

c = -mu"(y)iF - mQ - X' + LZ')] 
(8) 

= -RCov[F, u"(y)i^Q - X* + LZ*)] 

The covariance term has the same sign as 9[u"(y )03Q - X* + LZ*)]/9F = u'*(y )(PQ - X* + 

LZ*)^(9f /9F ), which is positive under nonincreasing absolute risk aversion.^ Therefore, c is 

also negative. 

At the optimum, i^pp, ^pp;, a, b, and c are fixed numbers and (7.1) and (7.2) 

implicitly contain X* and Z*. Holding all values at the optimum, X* and Z* can be obtained 

from (7.1) and (7.2) as 

X' = tP(Q -  b) + c]^ppi  

A 

and 

^ igpp - ̂ ppi = (l- oi)E(u"(y )(F - F)^|F S F] < 0 and iSp^i < 0, therefore 

%F < %F1 < 0- Similarly, a - b = (1 - a)E[u"(y )Q (F - F)2|F ^ F] < 0 and b < 0, 
wiiich implies a < b < 0. 

^ Nonincreasing absolute risk aversion indicates that u" > 0 (refer to Appendix A). 
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Z* = ~ (9,2) 
A 

where A = ^pp^ppi - •^fFI^ ~ '^FFl ('^FF ~ ^FFl ) ^ ® because ^pp < •^ppi < 0, 

a < b < 0, and c < 0. Consequently, the producer always sells futures, that is, X* > o7 

On the other hand, whether the producer sells or buys put options is ambiguous. 

Before proceeding, we now focus on the additional hedging caused by production 

uncertainty. It is useful to show that, with nonstochastic output, the optimal decision is to sell /3Q 

on the futures market and to stay out of the options market. 

Substituting Q = Q + (Q - Q ) into c in (8) and rearranging yields 

c = -R [P% + Sgçf  -  (10) 

where % = E[u"(y )(F -F)], %i = aEi[u"(y )(F -F)], and iCgp = E[u"(y )(Q -Q) 

(F -F)]. 

Substituting Q = Q + (Q - Q ) into the expression for a and b, we get 

O = Q^pp + ^QFF ^ ~ ^^FFl '^QFFl 

where igqpp = E[u"(f )(Q - Q)(F - F)2] and ^gqpp^ = aEi[u"(y )(Q - Q)(F - F)2]. 

^ The optimal futures and put option amounts of X* and Z* can be expressed as a function of 

iCpp, ^^pi, a, b, and c. In effect, these terms are also functions of X* and Z*. However, 

when X and Z are expressed in terms of ^|?f. •^fFI' and c, which are fixed at the 

optimum, one can find the signs of X and Z and/or the relative sizes of X* and Z*. For 

example, suppose that X* = hj(X*, Z*) > 0, Z* = h2(X*, Z*) > 0, and h|(X*, Z*) is always 

greater than h2(X , Z ). Then, one can conclude that X* > Z* > 0. 
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Substituting tlie values just obtained for a and b into (9.1) and (9.2), X* and Z* can be 

rewritten as 

X* = BÔ + ~ ^QFFl) * (11.1) 
A 

Z' = Q + " ^Fl^QFFl^ (11.2) 
A 

Substituting X* and Z* from (11.1) and (11.2) into (10) and rearranging, one obtains: 

^ ~ ~ ^QFFI^ ~ ^Fl^QFFl^^ 

m^^FFJ - ^FI^FF) - ̂  

When the production process is nonstochastic, ^Qp, ^Qpp, and •^QpFl zero® and 

thus c = 0. The second terms in the right-hand sides of (11.1) and (11.2) are all zero, and thus 

the optimal futures amount under production certainty is jSQ and options are redundant. 

Consequently, the right-hand sides of (11.1) and (11.2) can be separated into two parts: the first 

term in the right-hand side is the optimal futures and put options amounts sold by the producer 

under production certainty, and the second term represents the additional futures and put options 

amounts arising from production uncertainty. 

Under independence of price uncertainty and output uncertainty, ^qff ~ E[u"(y )(Q -

Q)(F -F)^] = E[(F - F)^Cov{u"(y ), Q |F }]. The conditional covariance has the same sign 

^ For example, igqp = E[u"(y )(Q - Q)(F - F)] = 0 because Q = Q under nonstochastic 

production. 
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payof f 

selling futures 

selling 

put options 

combined position 

Figure 1. An example of the combined position of optimal futures and options 
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as 9u''(y )/9Q = u"'(y )p (where p = T + /3f + e ), which is positive because u" > 0 with 

nonincreasing absolute rislc aversion. Similarly, i^Qppi is positive. The additional futures and 

put options attributable to production uncertainty are denoted as AX* and AZ*, respectively. 

4c $ 
Then, subtracting AZ from AX yields 

AX* -  AZ* = - PSg<?m) (12) 
A 

Because i^pFl " •̂ FF > 0, c < 0, •^^qffi > 0, and A > 0, the right-hand side of (12) is 

negative and one can conclude that AZ* > AX*, even though the signs of AX* and AZ* are 

unknown. Thus, production uncertainty (that is independent of prices) causes producers to take 

options and futures positions that are different from those taken when production is certain. 

A standard "payoff" diagram is a good way to describe these positions. Figure 1 

represents the profit or loss at harvest time in futures and options based on the futures price 

realized at harvest. If the producer has sold a futures contract, profits Arom that portion of the 

portfolio fall as the futures price at harvest increases because the producer has promised to 

deliver, at a fixed price, an asset whose value is increasing. The payoff from sale of a put 

option, on the other hand; will rise as the futures price rises from 0 to the strike price (F). 

Because the put option has no value if F ^ F, the payoff is independent of the realized futures 

price in the region from F to infinity. That the return to a put option is increasing in F is clear 

by observing that R has a negative effect on profits in (1), but that F also has a negative effect 

on R in (2). For example, if we know that the producer has sold more futures contracts than put 

options, we can describe how the total position responds to the realized futures price at harvest. 
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Figure 2. Additional hedging positions taken because of production uncertainty 
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The payoff line for the combined position is determined by adding the payoffs of the two assete 

vertically for each futures price realized at harvest time. 

From Figure 1, we see that, for this particular example, at any point up to the strike price 

the reduced profit in the futures market from an increase in the futures price is greater than the 

increasing benefit (reduced loss) in the options market. At any point beyond the strike price, a 

price increase causes the loss in futures to increase, whereas the put options profit is not affected 

by realized fiitures price changes. Therefore, we can conclude that the net payoff is decreasing in 

realized futures price in all regions. 

The precise nature of the additional positions will depend on the producer's utility 

function and the subjective distributions of output and prices. Nevertheless, only five possible 

outcomes can occur that satisfy (12). These are shown in (a) through (e) of Figure 2. The dotted 

lines represent the payoff diagrams in futures and put options and the continuous line represents 

the payoff for the combined position. Underhedging when the futures price is low is common to 

all five possibilities. Intuitively, this situation occurs because profit risk caused by output 

uncertainty is lowest at low prices.^ In four of the five cases [(b) through (e)], the producer 

takes additional insurance when the realized futures price is high. This action can be explained 

by the positive correlation between realized futures price and profit risk. Case (a) is the only 

exception to this rule. The payoff diagram for the combined position of case (a) is inversely V-

shaped (hereafter denoted A-shaped). Here, the effect of production uncertainty is to hedge 

^ For simplicity, suppose that F = P and that Y q is the profit after the producer sells Q 

futures, that is, Y Q = F Q + (F - F )Q - C(Q). The conditional expectation and the 

conditional variance of Y^ on the realized futures price are E[Y Q|F ] = FQ - C(Q) and 

Var[Y Q|F ] = F ^ Var(Q ). Therefore, for each realized futures price, the expected profit is 

constant but the profit variation increases as futures price increases. 
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against small price clianges and to accept losses when price changes are large. This situation 

occurs when the producer's subjective estimate of output variance is low, when he or she 

perceives that the possibility of high prices is low, and/or when risk aversion is very low so that 

the producer is unconcerned about the possibility of high prices. 

Interestingly, there is one possibility for which no options are purchased [(d) in Figure 2]. 

In this case, however, the number of futures contracts is different from that in the LMH model 

(i.e., X* = /3Q + AX*, where AX* < 0 because AX* < AZ* = 0). This possibility leads to 

the conclusion that production uncertainty creates hedging decisions that are different from the 

LMH model, regardless of the functional form of the utility or the expected price distribution. 

To summarize, in the absence of any anticipated correlation between the producer's output 

and prices, the effect of production uncertainty on profit risk is greatest near the mean price or at 

high prices. The producer will hedge against this additional risk by creating payoff schemes that 

are loss-making at low prices and profit-generating near the mean or at high prices. The optimal 

hedging position depends on the producer's utility function and expected output and price 

distributions. 
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INTRODUCING DEPENDENCE BETWEEN PRICES AND OUTPUT 

Consider a circumstance for whicli local production changes are expected to be correlated 

with price changes. Following Losq, the aggregate demand (Q and random individual output 

(Q ) faced by the individual producer are 

(13, 

Q - X(6'; k) 

where Q ® is the aggregate supply and k represents the component of firm-specific production 

uncertainty, which does not influence aggregate supply and price. At equilibrium, Q ® = Q ^ so 

that the producer's random output is 

Q = Kir>(P); K] 

The first derivative of Q with respect to F is 

^ 
dP dD dp 

Multiplying by P /Q on both sides and rearranging, the following relation holds: 

n = •01^2 (^5) 

where = 91n(Q )/91n(P ), t/j = 9ln(K)/91n(Q ®), and j; 2 ~ 91n(D)/91n(P ). 

The elasticity coefficient (ij ) is the product of the elasticity of local production with 
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respect to aggregate supply (tj and the elasticity of the aggregate demand with respect to 

p r ice ( t j  2) .  Assume that  aggregate demand has a  negative correlat ion with price ( i .e . ,  rj j  < 0),  

that local output has a positive correlation with aggregate supply (i.e., jj j > 0), that rj is 

constant, and that -1 < 7; < 0.^^ 

From (14), Q is a function of P (in turn, P is a function of F and e ) and * , that is, Q 

= K[D(P ), K ] = K[D(F , e ), /c ] = K*(F , e , k). Here, F , e , and * are independent of 

each other, and thus the joint density function of F , e , and K is the product of each density 

function. This information is useful in analyzing the first-order conditions. Now, we consider 

the first-order condition (5.1) in the case where production and price are correlated. This can be 

expressed as 

E[u'm(F - F)] = fXF -  ̂ {f fuX}0Aj(k)/i2(ë)dKdë}h,(F)dF 
J F  J È J K  •' (16.1) 

= E[(F -  F){E[u'(Y) | f]}]  = Elg(F)(F -  F)] = 0 

where hi(/c ), h2(e ), and h3(F ) are density functions of k , e , and F , respectively. 

Similarly, (5.2) can be rewritten as 

Losq calls ij j a pseudo-elasticity, which measures the degree of covariability between local 

output and aggregate supply. 

The producer might believe that farm yields are positively correlated with regional yields 
and that increases in regional yields can cause national price decreases. 

The term j/ can be less than -1, but we will assume that ij is inelastic. In many 
agricultural commodities, the demand elasticity (%)'s inelastic and the elasticity of local output 
with respect to aggregate supply (tjj) is also inelastic. Therefore, it is reasonable to assume that 
-1 < rj (=r/i7;2) < 0. 
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£[«'(y)|(F -F)L + ^}] = E\giF)[{F -  F)L + R)} = 0  (^^.2)  

Under nonincreasing absolute risk aversion and -1 < ri < 0, g(F ) is continuous, strictly 

convex, and differentiable over the intervals [0, F] and [F, oo).^^ Applying the mean value 

theorem to g(F ) yields 

SiF) -  8(F) ^  ^  = £[a' /(y){p(l  + r\)q -  X + LZ]\n 
F - F df 

where q = Q(f ) and y is the profit of an individual firm when the futures price is f . Thus, 

g (F) i s  

= g(^ + (F - + t])g - X + m\h 

Substituting (17) into (16.1) and (16.2) and rearranging in a similar manner to that for obtaining 

(7.1) and (7.2) yields 

V - = P(1 + nx (181) 

- = - P(1 + Ti)e + c (18.2) 

where c = - R{E[u'(Y )] - E[u'(Y )|F ]}, d = E[u"(^)q (F - F)2], e = Ei[u"(y )q (F - F 

)^i, ^fF ^ "^FFl ^ 0, and d < e < 0. 

This is true because 

= £[«'"(?){P<?(1 + n) - % + LZ]^\F] + E[u"{Y)Hi + > o. 
dF^ dF 

The derivations of (18.1) and (18.2) are presented in Appendix D. 
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The procedure to find the sign of c is similar to that used previously. The term c can be 

rewritten as follows: 

c = - RE[u"(y){F - ^(Pg(l + Ti) - X* + LZ*}] 

= - RCov[F, u"mqi\ + n) - %* + LZ*n 
The covariance term has the same sign as 3[u"(y ){/3q (1 + 17) - X* + LZ*}]/9F = 

"'"(y ){/3q (1 + ?) - X* + LZ*}^ + u"(y )/3(l + 7;)(3q /9f )(9f /9F ), which is positive under 

u" > 0 and -1 < < 0. Therefore, c is negative. 

The optimal futures and options amounts under the dependence assumption are obtained 

by solving (18.1) and (18.2) simultaneously. They are 

X* = - g) c]^ffi (19.1 

A 

Z* = ~ (19.2] 
A 

One result is that, under u'" > 0 and -1 < t; < 0, the producer always sells futures 

because d < e < 0, c < 0, and ^CpFl Options are almost always required for hedging. 

To understand the intuition here, assume that P = F and that individual output has a one-to-one 

relationship with price. Because 9(P Q )/9P = Q (1 + 77) > 0 and 9^(P Q )/9P ^ = (1 + 77) 

(9Q /dP ) < 0 if-1 < r; < 0, the unhedged random revenue (P Q ) is concave in the realized 

price and its slope is always positive. In this case, options can be used to hedge against the 

nonlinearity of revenue. 
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NUMERICAL SIMULATIONS 

The results obtained from the previous sections are supported by using numerical 

simulation in this section. This section also analyzes the effect of the degree and nature of risk 

aversion, the size of the elasticity coefficient (ij), and the source of production uncertainty on 

hedging behavior. First, the method used to find the optimal futures and options amounts is 

explained. Then, the optimal futures and options positions are calculated under various scenarios. 

In all cases, we assume that P = F (no basis risk) and that the producer has constant absolute 

risk aversion (CARA), that is, u(Y ) = m - n exp[-AY ] where A is a constant absolute risk-

aversion coefficient and m and n are coefficients. We also assume that C(Q) = 0 and hence 

discuss revenue rather than profit. 

One motivation for this section is to show that, if one has specific information about risk 

aversion and subjective expectations about the futures price and output distributions and the 

correlation between individual yields and national price (if any), one can solve for the optimal 

futures and options positions for individual producers. The method we use to find these optimal 

positions is straightforward and lends itself to real-world application. To show that this is 

possible, we chose data that is relevant to a typical Iowa corn producer. Because several of the 

variables used in the simulation are not known with certainty, we also perform a sensitivity 

analysis to show how the optimal positions respond to changes in the data. 

Data and Method 

The mean and variance of the output for typical Iowa corn producers were calculated 

from Iowa Farm Costs and Returns (for the years 1970-89). The coefficient of variation of com 
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production for the average Iowa farmer was 0.158113.'^ Average 1989 corn production of 

20,000 bushels was used to represent mean production and thus the variance of corn production 

was assumed to be 1 x 10^.^^ 

Corn is assumed to be planted in the second week of May and harvested in the second 

week of September. We assume that the September corn futures price in September is the mean 

price for the year. The deviation of the futures price from the mean is calculated as the 

difference between the September corn futures prices in May and September. We used data from 

1974-89. The coefficient of variation of futures price for these years was 0.173205. The 

September corn futures price in the second week of September 1989 was $2.92 and the variance 

of futures price was 0.255792. 

The optimization procedure used in this study is as follows. The first step is to establish 

for X an interval of ± 10,000 around a starting point and to divide this interval into 19 evenly 

spaced segments so that the number of X considered for calculation is 20, For example, if the 

starting point of X is 0, the values for X are (-10,000, ..., -2,000, -1,000, 0, 1,000, 2,000, ..., 

10,000). The values for Z are obtained by using the same method. In the X-Z plane, there is 

now a grid of 400 points. The expected utility level at each point in the grid is calculated. The 

second step is to choose the grid point, for example (Xj, Zj), where the expected utility function 

is greatest. If the point is an interior solution, then the first step is repeated within an interval of 

±1,000 around (Xj, Zj) with segment lengths of 100. If an interior solution is found, it is called 

(X2, Zg). If the point is a corner solution, then the first step within an interval of ± 10,000 

The coefficient of output variation is defined as {Var[Q 

When expected production is 20,000 bushels and the coefficient of variation is 0.026165, 
production variance is calculated as (0.158113 x 20,000)^ = 10,466,000. 
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around (Xj, Zj) is repeated. This procedure is repeated until an interior solution is found. 

Finally, the first and second steps are repeated within an interval of ± 100 around (X2, Z2) with 

segment lengths of 10. 

Strictly speaking, the solution to this procedure may not be exactly at the optimum point. 

However, the maximum deviation from the true optimum (10) is less than the minimum contract 

size in futures and options markets. We use a CARA utility function so that the second-

order condition is always satisfied (see Appendix B). 

Results and Discussion 

Assume that a producer has performed the analysis just discussed and believes that price 

and output are normally distributed as follows: 

F ~ M2.92, 0.255792) 

Q ~ M20,000, 1 X 10') 

We assign values ranging from $1.30 to $4.54 for F and from 10,000 bushels to 30,000 

bushels for Q. 

Table 1 represents the producer's optimal hedging behavior in various situations. Rows 1 

through 5 are the cases for which price and output are independent and rows 6 through 12 assume 

dependence. The last four columns in Table 1 indicate the slope of the total hedging position and 

A futures contract for corn is 1,000 bushels on the MidAmerica Commodity Exchange and 
5,000 bushels on the Chicago Board of Trade. 
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Q &P A = coefficient of absolute 

risk aversion 

V X* Z* slope (X*, Z*) 

F ^ F F ^ F 

slope (AX*, 

F 3 F F ^ F 

1 Ind^ 0.00015 15,720 -330 3,950 4,280 
2 Ind 0.00025 13,320 -1,010 5,670 6,680 
3 Ind 0.00035 12,010 -950 7,040 7,990 
4 Ind 0.00045 11,320 -740 7,940 8,680 

0.00015 if Y ^ 30,000 
5 Ind 0.00045 if 25,000 ^ Y < 30,000 12,200 -4,900 2,900 7,800 

0.00090 if Y < 25,000 
6» DepC 0.00015 -0.1 17,830 -340 -18,170 -17,830 
7a Dep 0.00015 -0.3 13,370 -1,260 -14,630 -13,370 
8^ Dep 0.00015 -0.5 9,200 -1,590 -10,790 -9,200 
9a Dep 0.00015 -0.7 5,370 -1,280 -6,650 -5,370 

10® Dep 0.00015 -0.9 1,830 -340 -2,170 -1,830 
11^ Dep 0.00015 -0.5 8,780 -860 -9,640 -8,780 

0.00015 if Y à 45,000 
12^ Dep 0.00045 if 40,000 ^ Y < 45,000 -0.5 7,040 -3,200 -10,240 -7,040 

0.00090 if Y < 40,000 

^ Only firm-specific production uncertainty is considered. 
^ Both firm-specific and marketwide production uncertainty are considered. 
^ Ind and Dep indicate the independent case and the dependent case. 
^ Int the dependence case, the additional positions are meaningless because revenue depends on i}. 
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the additional hedging position over the intervals [1.3, F] and [F, 4.84].^® 

Changing the absolute risk-aversion coefficient (rows 1 through 4). 

Risk-aversion measures range from 0.00015 to 0.00045 (rows 1 through 4), where the 

latter represents the most risk-averse case.^^ Results for rows 1 through 4 show that X* > 0 

and AZ* > AX*, and that the additional hedging position is positively sloped in the realized 

price.Production uncertainty causes more revenue uncertainty at higher prices, as explained 

earlier. Therefore, the risk-averse producer hedges more against these higher prices than does the 

less risk-averse producer. 

Changing the elasticity coefficient (ij) and the nature of production uncertainty 
(rows 6 through 11). 

If there is no-firm specific production uncertainty, additional hedging needs will depend 

on the producer's perception of the elasticity coefficient. To see why this is true, consider the 

extreme case for which the elasticity coefficient is -1. Any additional production will reduce 

prices by an amount that maintains revenue, so no additional hedging would be needed. 

The slope is defined as a[(F - F )X* + {R - (F - F )L}Z*]/dF = -X* +LZ*. 
However, we can redefine it as a[(5000xF - 5000 x F )(X*/5000) + {5000 xR - (5000 x F -
5000 XF )L}(Z*/5000)]/ 9(5000 xF ) = -X*/5000 +LZ*/5000 if the contract is 5,000 bushels. 

In this case, for example, the slopes of row 1 are 0.3950 in F ^ F and 0.4280 in F S: F. 

Hanson and Ladd use values ranging from 0.00005 to 0.00045. King and Robinson 

suggest that the absolute risk-aversion coefficient should be concentrated in the range from 

-0.0001 to 0.001. 

In a simulation not reported in Table 1, we used (i) A = 0.00001 and (ii) A = 0.00015 

and Var(Q ) = 1 x 10^. Here, the additional hedging positions are (7,520, 15,640) and 

(580, 1,250), respectively, which lead to a A-shaped curve. 
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Suppose that the relation between individual output and price is as follows: Q = yP 

where 7\ is the elasticity coefficient defined in (IS) and 7 is a constant coefficient. Assume that 

expected production remains at 20,000 bushels so that E[Q ] = 7E[P = 20,000. Then, if we 

know the price distribution (assumed to be normally distributed with mean 0 and variance 

0.255792) and assume a value for j;, we can solve for 7. 

Rows 6 through 10 show how the optimal position responds to the elasticity coefficient. 

All these positions are kinked in futures prices because the producer attempts to offset unhedged 

revenue patterns that are concave in the realized futures price. The put options amount purchased 

by the producer is at a maximum when ij = -0.5 (row 8).^' 

Now, suppose that the firm-specific production uncertainty (k ) exhibits multiplicative risk 

as follows: 

Q = yP\l + K) 

where k is assumed to be independent of P and normally distributed with mean 0. Var(x ) can 

be obtained from Var(Q ) = 1 x 10^ for consistency. Suppose that rj = -0.5 and A = 0.00015 

(row 11). Thus, 7 = 33775.513 and Var(K) = 0.016446957.^^ The optimal futures and put 

options amounts are (8,780, - 860) in this case and (9,200, -1,590) when firm-specific production 

uncertainty was not considered. To hedge this firm-specific production uncertainty, the producer 

9^(P Q )/9P ^ = j;(l + %)(P /Q ). This equation reflects the curvature of the realized 

revenue curve with repsect to price. The second derivative with respect to price has a minimum 
value at r; = -0.5. 

The terms 7 and Var(K ) can be obtained from 7 = 20,000/E[P and Var(K ) = [1 x 10^/7^ 
+ {E[P'']}2-E[P 2'/]]/E[p2'i]. 



www.manaraa.com

73 

sells 420 fewer bushels in the futures market and buys 730 fewer bushels in the put options 

market. Therefore, the additional position attributable to firm-specific production uncertainty is 

positively sloped in prices. 

Revenue-dependent risk aversion (rows 7 and 12). 

It is possible to solve the simulation model with absolute risk-aversion coefficients that 

change with revenue. There may be producers who are less risk averse at high revenue levels 

and/or very risk averse at low levels. Rows 5 and 12 show the situation for which the degree of 

risk aversion is negatively correlated with revenue. The results show that more put options 

are purchased in this situation. The intuition here is that the producer becomes more concerned 

about lower revenues and therefore purchases more put options than in cases for which we assume 

constant risk aversion. 

The minimum number of bushels in a put option contract is 5,000; therefore, only 

producers represented by rows 5 and 12 would find it optimal to purchase a put. These numbers 

are, however, relevant for producers who expect to sell only 20,000 bushels. If expected 

production was higher, the volume of options required would also be higher. Also, producers in 

other states may be exposed to more weather-related yield risk than are those in Iowa. More 

We divided the revenue range into three regions: for some value Y^, region lisYf<:Y, 

region 2 is Yf- 5,000 ^ Y < Y^, and region 3 is Y < Yf- 5,000. We assign the absolute risk-

aversion coefficients of 0.00015 for region 1, 0.00045 for region 2, and 0.00090 for region 3. The 

CARA utility function is uj(Y ) = mj - n^exp[ - Aj(Y - Y^)] for each region. Continuity and 

differentiability of the utility function at Y^ indicate that uj(0) = U2(0) and u'j(0) = u'2(0). 

Similarly, continuity and differentiability at (Yf- 5,000) require that U2(-5,000) = U3(-5,000) and 

U'2(-5,000) = U'3(-5,000). If mj = 2 and nj = 3 are chosen, then m2 = 0, n2 = 3, mg = 

1458742.7, and ng = 180.034626. This utility function is continuous and differentiable, even though 

it is a combination of three different utility functions. 
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importantly, individual Iowa producers may face significantly greater yield variation than the 

average for the state as a whole. 

In general, the results show that production uncertainty reduces the usefulness and use 

futures contracts and increases the usefulness and use of purchased put options. 
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CONCLUSIONS 

Options are a relatively new and popular investment tool for farmers. In the absence of 

production risk, these assets have no role as hedgng instruments because, with linear price 

assumption, futures dominate options as a way to offset price risk. When production uncertainty 

is introduced, however, options have a role to play. For example, if yields are lower than 

expected and if the producer has sold the expected yield on the futures market, the producer is 

exposed to revenue risk that can be partially offset with options because he or she will have sold 

more on the futures market than is available to sell on cash markets. Options are useful whether 

or not producers believe that their individual yields are correlated with market prices. In 

addition, the usefulness of options as hedging tools increases with firm-specific production 

uncertainty and for producers who are more risk averse at lower revenues. 
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APPENDIX A: APPLICATION OF THE MEAN VALUE THEOREM 

The mean value theorem states; 

Let g be a continuous Junction on [a, b] and have a derivative at all x in [a, b] except at 
perhaps x = a and x = b. Then there is at least one argument X such that a < X < b and 

f'm = 
b - a 

The conditions for using the mean value theorem are continuity and differentiability. 

With the existence of options, price distribution is truncated at the strike price and thus g(F ) is 

not differentiable at F. That is, because L = 1 when F approaches F from the left side and 

L = 0 when F approaches F from the right side, the slopes of g(F ) with respect to F at F^ and 

F" are 

lim_ Mil = E[u"(Y)i^Q - X)\F^F*] 
F-F* dF 

and 

lim = E[u"(mQ - X + Z)\F-F-] 
t-t Qp 

thus 

i f Z * Q ,  l i m _  dg(F) ^ lim_ dg(F) 

F-F* QP F-F QP 

When F approaches F from the left side, the slope of g(F ) is different from the slope of g(F ) 

when F approaches F from the right side. Therefore, g(F ) is not differentiable at F (although it 

is continuous). However, g(F ) is differentiable over the interval [0, F] and [F, oo), and thus the 

mean value theorem can be applied to g(F ) in [0, F] and [F, oo). 



www.manaraa.com

78 

9CF] 

0 

F f F 

Figure A. A schematic representation of how the expected marginal utility conditioned on realized 
futures price réponds to the futures price using the mean value theorem 
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Before proceeding, note tliat the function g(F ) is strictly convex in F over the interval 

[0, F] or [F, 00), which can be shown by differentiating g(F ) with respect to F as follows: 

= E[u'"(Y)(^Q - X+LZf\F\ 
dF^ 

To characterize the sign of 9^g(F )/9F we need to sign u'"(Y ). First, consider that absolute 

risk aversion is given by A • - u''(Y )/u'(Y ). Then, nonincreasing absolute risk aversion 

means that 9A/9Y = - [u'"(Y )/u'(Y )] + [u"(Y )/u'(Y )]^ ^ 0. This implies that u" must be 

positive. Therefore, under nonincreasing absolute risk aversion, the second derivative of g(F ) 

with respect to F is positive because both terms within the expectation are positive. 

Consequently, under nonincreasing 

absolute risk aversion, g(F ) is strictly convex and differentiable in F over the interval [0, F] or 

[F, oo). 

Figure A shows how the mean value theorem can be applied to g(F ) over the interval 

[F, 00). Suppose that curve DACBE represents g(F ). There is a futures price fg such that g'(fo) 

will be the same as the slope of line AB. Here, for FQ in [F, oo), fg is unique given the strict 

convexity of g(F ) in F, oo). Equivalently, the slope of the line connecting OF, g(R) and 

(F , g(F )) for any F in F â F is the same as g'(f ), that is, 

g(^ - g(^ = A0. = E[u"(jO(PQ - X + LZ)\F] (A.l) 
F - F df 

where y = (r + /3f + e )Q + (F - f )X + {R- ^ - f )L}Z) and f is a monotonically 

increasing function of F because g(F ) is strictly convex in [0, F] and [F, oo). The left-hand side 

in (A.l) represents the slope of line AB, and the right-hand side represents the slope of g(F ) at 
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F = fQ. This analysis can be conducted for all F in [F, oo) by connecting point A and any 

point on curve g(F ). Applying the mean value theorem to g(F ) over the interval [0, F] is similar 

to the explanation provided here. 

From A.l, g(F ) is 

= 8i^ + (F - F)g'(^ = giF) + (F - ̂ £[m"()0(P<? - X + LZ)\F] 
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APPENDIX B: THE SECOND-ORDER CONDITION 
UNDER A CARA UTILITY UNCTION 

Given the existence of futures and options markets, the second-order condition is 

SOC = E[u"(Y)(.F - Ff[E[u"(Y){R - (F - F)L]^ ^ 

- {E[u"(Y)(F - F){R - (F - F)I}]}2 

where 

E[u"iW - (F -

= - 2RaE^[u"(Y)(F - F)] + aEJu"(Y)iF - Ff] 

E[u"(Y)(F - F){R - (F - F)L)] 

= - mu"(Y)(F - F)] - (iEi[u"(f){F - Ff] 

Under a CARA utility function, that is, E[u"(Y )(F - F)] = 0, the second order condition in 

(B.l) can be rearranged as follows: 

SOC = £[«"(y)(F - Ff]{pE[u''(Y)l - 2RaE^[u'XY)(F - ^]} 

+ a£,[u"(y)(F - Ff][E[u"imF - F)^] - aE^[u"iY)iF - P)^]} 

which is always positive because E[u"(Y )(F -F)^] < aEj[u"(Y )(F < 0 and 

E2[u"(Y )(F -^] > 0. Consequently, using a CARA utility function, the second-order 

condition is always satisfied. 
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APPENDIX C: DERIVATION OF EQUATIONS (7.1) AND (7.2) 

The first-order conditions are 

E[g{F)(F - -Ô1 = 0 (C.l) 

E[g(F){(F - F)L + m = 0 (C.2) 

where L = 1 if F ^ F and L = 0 if F S: F, and g(F ) = E[u'(Y ) |F ]. In Appendix A, it was 

shown that application of the mean value theorem to g(F ) gave 

giJh = g(.h + (F - F)E[.u"(y)(.^Q - X + LZ)\F\ (C.3) 

where y is profit associated with a futures price of f . Substituting (C.3) into (C.l) gives 

E[iF - + E[(f - Ff[E{u"(y)i^Q - X + LZ)\F\]^ = 0 (^.4) 

Because g(F) is a fixed number and E[E{*|F }] = £[•], (C.4) can be rewritten as 

E[(F - + E[u"(y){F - F)\^Q - X + LZ)] = 0 

Because E[F - F ] = 0, (C.4) can be rewritten as follows: 

E[u"(y)iF - F)\^Q - X + IZ)] = 0 (^.5) 

Equation (C.2) can be rewritten in a similar manner; 

a£ife(/)(F - ̂ ] + REiu'iY)] = 0 (C.6) 

where a = Prob[F ^ F] and subscript 1 represents the conditional expectation on F ^ F, that is, 
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EJM =  EM IF  ^  F] .  

The first term (FT) in the left-hand side of (C.6) can be written, by substituting for g(F ) 

from (C.3), as 

FT = aE0 - F){8{h + (F - - % + LZ)\F\]] 

Factoring out terms within {•} and using E[E{*|F }] = E[*] and L = 1 when F g F, it follows 

that 

FT = OLg{F)E^[F -F] + OLE^[u"(y){F - F)\^Q - % + Z)] 

Now using R = E[(F - F )L] = - aEi[F - F] and g^ = E[u'(Y )|F = F] yields 

FT = - RE[u'{Y)\F = ^ + aEymF - ^^(P<? - % + Z)] 

Therefore, (C.6) can be rewritten as 

-RE[u'{Y)\F = F] + aE.[u"(y)(F - F)\{iQ - X + Z)] + RE[u'(Y)] 
(C.7) 

= R{E[u'(Y)] - E[uXY)\F = F\]^aEi[u"(y)(F - F)\^Q - X + Z)] = 0 

Using (C.5) and (C.7), the first-order conditions are: 

E[u"(SO(F - - X + LZn = 0 (C.8) 

R[E[u'(Y)] - E[u'(Y)\F = Fl) + aEi[u"(y)iF - F)H?Q - X + Z}] = 0 (C.9) 

Factoring out terms in {•}, (C.8) and (C.9) at the optimum can be rewritten as follows: 
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^E[u"<y)(F - FfQ\ - X'E[u"(y)(,F -
(C.IO) 

+ Z*aE^[u"(y)(F - Ff] ^ 0 

R{E[u'(X)\ - E[u'{Y)\F = F\] + 
(C.ll) 

- X*(tE^[u"(y){F - Ff\ + Z*A£;I[U"(Y)(F - ^^] = 0 

Consequently, (C.IO) and (C.ll) can be rearranged as follows: 

V - SGFF/' = PFL (C.12) 

- SGFFYX' + + C (C.13) 

where %F = E[u"(F - F ) \  = aEi[u"(y)(F -F)2], a = E[u"(y)Q(F -F)2], b = 

o(Ej[u"(y )Q (F - F )%], and c = - ̂ E[u'(Y )] - E[u'(Y )(F = F ]}. This gives a system of 

equations in the variables X and Z. If ifipp, -^PFI' c are constant, this system could be 

easily solved for X and Z. 
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APPENDIX D: DERIVATION OF EQUATIONS (18.1) AND (18.2) 

The first-order conditions are 

E[g(F)(F - ^] = 0 (D l) 

E{g{F)[iF -F)L + m= 0 (D-2) 

where L = 1 if F ^ F and L = 0 if F ^ F, and g(F ) = E[u'(Y )|F ]. In Appendix A, it was 

shown that application of the mean value theorem to g(F ) gave 

g{F) = giT) + (F - ^^[«"(jOiPd + Ti)g - X + LZ}\h 

where q = q(f) and y is profit associated with a futures price of f . Substituting (D.3) into (D.l) 

gives 

E[(F - + EiiF - h'^{E{u"{y)m - X + LZ\F\n = 0 (^.4) 

Because g(F) is a fixed number and E[E{*|F }] = E[*], (D.4) can be rewritten as 

E[(F - F)W + E{u"{S){F - + ti)g - X + LZn = 0 

Because E[F - F ] = 0, (D.4) can be rewritten as follows: 

E\u"{^{F - F)^1P(1 + n)9 - X + LZ}] = 0 (D.5) 

Equation (D.2) can be rewritten in a similar manner: 
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ctEJsiW - h + mu'iY)] = 0 (D.6) 

where a = Prob[F ^ F] and subscript 1 represents the conditional expectation on F ^ F, that is. 

Elf] = E[«|F ^ F]. 

The first term in the left-hand side of (D.6) (FT) can be written, by substituting for g(F ) 

from (D.3), as 

FT = aE^KF - F){gCF) + (F - ^£[m"()0{P(1 + r\)q - X + LZ]\F\}] 

Factoring out terms within {•}, and using E[E{"|F }] = E[*] and L = 1 when F ^ F, it follows 

that 

FT = ag(F)E^[F - Fl + aE^[u"mF - + 2)1 

Now using R = E[(F - F )L] = - 0!Ej[F - F] and g(R = E[u'(Y )|F = F] yields 

FT = - RE[u'(Y)\F = F] + aE^[u"(y)(F - ̂ ^{Pd + r\)q - X + Z)] 

Therefore, (D.6) can be rewritten as 

R{E[u'(Y)] - Eiu'iY)\F =  F \ ] ± a Ey(y)(F - ^^{P(l + r\)q - X + Z)] = 0 (D.7) 

Using (D.5) and (D.7), the first-order conditions are: 

E[u"(y)(.F - ;â^(P(l + r\)q - X + LZ]] ^ 0 (^.8) 

^{£[«'(1^1 -  E [ U X Y ) \ F  =  ^ }  +  < t E ^[u"(y)(F - ^^{P(l + r])q - X + Z]] = 0 (D.9) 
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Factoring out terms in {•}, (D.8) and (D.9) at tlie optimum can be rewritten as follows 

P(1 + ti)£[«"(JO(F - - X'E[u"(y)(F - Ff\ 
(D.IO) 

+ Z*aE^[u"(S)(.F -Ff\=0 

R[E[u'(y)-\ - E[u'(jh\F -m * p«(l + x\)Ey[u"mF " 
(D.ll) 

- X*(tEy(y){F - Ff-] + Z*OLE^[u"(y)iF - ̂ ^] = 0 

Consequently, (D.IO) and (D.ll) can be rearranged as follows: 

V - = p(l + r])a (D.12) 

- SEffyX' + = - P(1 + r])b + c (D.13) 

where %p = E[u"(F -F)\ %pi = aE|[u"(y )(F -F)2], d = E[u"(F)q (F -F)2], e = 

«Ej[u"(y )q (F - F )2], and c = - R{E[u'(Y )] - E[u'(Y )|F = F ]}. This gives a system of 

equations in the variables X and Z. If ^pp, •^pFl» b, and c are constant, this system could be 

easily solved for X and Z. 
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GENERAL SUMMARY 

The methodology used in the first paper has many possible applications. For example, 

one could determine whether generic or branded advertizing campaigns have been successful. 

One could also measure the impact of societal changes on demand for commodities or 

commodities aggregates. Finally, one could assume that consumer preferences are constant and 

check for structural change before using data for econometric purposes. 

The second paper used the mean value theorem to examine expected utility maximization 

hedging behavior in the presence of both price and output uncertainty when futures and options 

are available. Although options truncate the price distribution at the strike price, this paper shows 

that one can use the mean value theorem to obtain the optimal futures and options position. Other 

institutions such as insurance and some government programs truncate the distribution of price or 

revenue. The application of the mean value theorem presented in this paper is therefore useful 

for situations other than that considered here. 

The third paper shows that options are a popular tool for farmers. Options can be used as 

a hedging instrument when production uncertainty is introduced while these assets have no role to 

play in the absence of production risk. The usefulness of options as hedging tools increases with 

firm-production uncertainty and for producers who are more risk averse at lower revenues. 
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